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Abstract

The method of contour dynamics, developed for two-dimensional vortex patches by

Zabusky, Hughes, and Roberts [34] is extended to vortex rings in which the vorticity

distribution varies linearly with normal distance from the symmetry axis. The method

tracks the motion of the boundaries of the vorticity regions and hence reduces the

dimensionality of the problem by one. We discuss the formulation and implementation

of the scheme, verify its accuracy and convergence, and present illustrative examples.

1 Introduction

In two dimensions, the contour dynamics approach, initiated by Zabusky et al. [34], has made

possible the study of the inviscid motion of vortex patches containing piecewise constant

vorticity; see Pullin [28] for a review. Since vorticity follows the fluid, such a distribution

remains unaltered in time within each region and only the boundaries between regions have

to be tracked as they convect with the fluid velocity. The velocity can be expressed as a line

integral along the contours, thus reducing the dimensionality of the problem by one. The

approach was inspired by the so-called water-bag method in magnetohydrodynamics; for a

recent work see [12]. In principle, arbitrary vorticity distributions may be approximated by

piecewise constant ones, but to date most of the work has focussed on vortices containing

single regions.

This work has yielded mathematical insight into the nature of solutions of the Euler

equations as well as increased understanding of physical processes in shear layers and two-

dimensional turbulence. For instance Dritschel [7, 8] elucidated the role of energetics in the

merger and fission of vortices and in more general topological changes that occur during their

long time evolution. Specifically, perturbations of equilibrium solutions tend asymptotically

to different equilibrium states which are energetically compatible with the original state.

Dritschel [10] also studied nearly inviscid two-dimensional turbulence on a sphere using this
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approach and his results sharply contrast with behavior observed under the more viscous

conditions of spectral simulations. Neu [21], motivated to explain the genesis of streamwise

braid vortices in mixing layers, showed that highly flattened uniform vorticity cores “col-

lapse” to a circular shape with concentrated vorticity when subjected to a three-dimensional

strain which models the influence of spanwise rollers and neighboring streamwise vortices.

Lin and Corcos [17], using finite-difference calculations of the two-dimensional Navier-Stokes

equations with out of plane strain confirmed the mechanism for an array consisting of counter

rotating pairs. Pullin and Jacobs [29] provided further evidence with contour dynamics sim-

ulations of vortex arrays employing multiple contours. As a final example, we mention Sun

and Lichter [33] who studied some aspects of entrainment into a turbulent boundary layer

by considering the behavior of disturbances on a uniform vorticity layer near a wall.

This work extends the method of contour dynamics to vortex rings in the hope that it

may play a similar role in providing insight for axisymmetric flow that contour dynamics

has for planar flows. The extension to axisymmetric flow offers the possibility of expanding

the repertoire of possible vortex behavior by allowing an important effect lacking in planar

flow, namely vortex stretching.

Section 2 gives a derivation of the contour dynamics formulation for the case in which

ωφ/σ (the ratio of azimuthal vorticity to cylindrical radius) is constant within each vorticity

region. This form of the vorticity has been studied for over a century. Helmholtz [14]

already started deriving the speed of translation of thin rings of this class in his 1858 paper

and Kelvin put the finishing touches to the derivation in an appendix to the 1867 translation

of Helmholtz’ paper. In 1894 Hill presented his famous spherical vortex, an exact steadily

translating vortex in the thick core limit (see Batchelor [1, p. 526]). Norbury [22] provided

numerical solutions for the family of steadily propagating rings between the thin-core and

Hill limits. Some dynamical aspects have also been studied. This includes Dyson’s [11]

model from 1893 of thin interacting rings (for which which core dynamics can be neglected)

and the stability analysis of Hill’s vortex by Moffatt and Moore [20].
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Section 3 discusses the numerical implementation of the algorithm, including treatment of

the local contribution to the velocity field resulting from those portions of the contour which

neighbor the point at which the velocity is evaluated. Section 4 verifies the accuracy and

convergence of the numerical scheme. Finally, §5 presents two examples: the behavior of an

axisymmetric annular vortex layer and the head-on collision of two vortex rings. Appendix A

provides details on the local contribution to the velocity field and Appendix B works out

an expression for the Stokes’ streamfunction ψ in terms of a contour integral which might

prove useful to those who wish to find steadily translating configurations; it also helps in

computing the energy which is proportional to the integral of the product of ψ and the

azimuthal vorticity (Batchelor [1, p. 521]).

The present formulation and implementation was developed in the summer of 1984.

Around the same time C. Pozrikidis independently also developed a contour dynamics for-

mulation for axisymmetric flow and his work was reported in Pozrikidis [27] in which he

studied the instability of Hill’s vortex in the non-linear regime. We will remark on the sig-

nificant differences between the two formulations where appropriate. In 1990, W. Möhring

sent us a 1978 diploma thesis by Poppe [26] containing a contour formulation for the stream-

function which the author uses to calculate some generalizations of Norbury’s rings [22]

containing nested contours. Poppe’s contour formulation for the streamfunction appears to

be different than the present one which is provided in Appendix B.

2 Axisymmetric contour dynamics formulation

In this section we derive the equations of motion for contours which bound regions in which

the vorticity is a linear function of the cylindrical radius, σ. The reason for using this

distribution will be given below.

Consider cylindrical polar coordinates (x, σ, φ) as shown in Figure 1; x and σ measure

distance along and normal to the axis of symmetry, respectively, and φ is the azimuthal
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angle. Let the vorticity ω be entirely azimuthal and independent of φ:

ω = (0, 0, ωφ(x, σ)). (1)

The corresponding velocity field is

u = (ux(x, σ), uσ(x, σ), 0). (2)

Then for inviscid, incompressible, and barotropic flow the vorticity obeys the evolution

equation [1, p. 508]:

D(ωφ/σ)

Dt
= 0. (3)

The inclusion of the radius σ in (3) is a consequence of the fact that a circular vortex line

which moves from a radius σ1 to a radius σ2 undergoes a change in vorticity proportional to

σ2/σ1, i.e., according to the relative change in its circumference. If, in some region D, we

initially have

ωφ = Aσ, (4)

where A is a constant for the region, then this distribution is maintained for all time. To

solve (3) it is then necessary to follow only the interfaces between such regions which are

advected according to the local fluid velocity. An equation similar to (3) also holds in helical

coordinates, the radius σ being replaced by the metric appropriate to that coordinate system;

a contour dynamics formulation should also in principle be possible in this case.

We now seek a representation of the velocity field in terms of line integrals along the

generators of the bounding surfaces of the vortical regions. Several vortex structures may

be present and there may be several nested regions within each structure, but, for brevity

of the presentation and notation we will only consider the case of a single vorticity region

with zero vorticity outside of it. Multiple and nested regions are treated by superposition.

A kinematic relation between the velocity and vorticity is the Poisson equation

∇2u = −∇× ω, (5)

5



whose inversion for an unbounded fluid yields the Biot-Savart expression

u(x) =
1

4π

∫

D

∇′ × ω(x′)

r
dx′. (6)

Here, r ≡ |x − x′| is the distance between the source and field points and ∇′ is the del

operator with respect to the source point x′. In his numerical study of steadily translating

rings, Norbury [22] used a formulation based on the Stokes streamfunction which is more

convenient than a velocity formulation for calculating steady shapes. Reduction to contour

integrals was not made and this necessitated costly plane quadratures. In Appendix B

we obtain a contour reduction for the Stokes streamfunction which might prove useful in

studying steady solutions more complicated than the Norbury’s [22] family, for instance

periodic arrays or rings with nested regions.

For future use we note that in cylindrical coordinates

r2 = A−B cos(φ− φ′), (7)

where

A ≡ (x− x′)2 + σ2 + σ′2, (8)

B ≡ 2σσ′. (9)

For an axisymmetric distribution of vorticity ωφ = ωφ(x, σ), ωx = ωσ = 0, the curl of the

vorticity which appears in the integrand of (6) is

∇× ω(x) =
1

σ

∂(ωφσ)

∂σ
x̂ − ∂ωφ

∂x
σ̂. (10)

The vorticity suffers jumps at the boundary of the vortical region so the derivatives above

must be interpreted in the sense of distributions. In two-dimensional flow with uniform

vorticity, ∇× ω(x) is non-zero only where jumps in vorticity occur and so a formulation in

terms of contour integrals is almost immediate. In the present situation ∇×ω(x) = 2A x̂ (a

constant) inside D, a Dirac δ concentrated on the boundary ∂D due to the vorticity jump,

and zero outside D. Hence, it is convenient to decompose the velocity field, as given by
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(6), into a contribution due to the continuous vorticity distribution and another due to the

vorticity jump across the boundary:

u = uc + uj. (11)

2.1 Jump contribution to the velocity field

One way of obtaining uj is to evaluate the Biot-Savart integral over a shell of thickness 2ε

surrounding ∂D and then take the limit of zero ε. This is best accomplished by transforming

to an orthogonal surface oriented coordinate system (n, s, φ) as shown in Figure 2. To

ensure unit metrics let n and s measure arc length along the respective coordinate lines.

The metric for the φ coordinate lines is the radius σ. If θ is the angle, with respect to

the axis of symmetry, of the normal direction, then these coordinates are described by the

transformation




dn

ds

dφ


 =




cos θ(s, n) sin θ(s, n) 0

− sin θ(s, n) cos θ(s, n) 0

0 0 1







dx

dσ

dφ


 . (12)

On the surface of the vortex, n = 0, one has θ(s, n) = θ(s), the orientation of the outward

pointing normal relative to the axis of symmetry. Expressing (10) in this system, we obtain

∇× ω(x) =

(
∂ωφ

∂n
sin θ(s, n) +

∂ωφ

∂s
cos θ(s, n) +

ωφ

σ

)
x̂

−
(
∂ωφ

∂n
cos θ(s, n) − ∂ωφ

∂s
sin θ(s, n)

)
σ̂. (13)

Upon insertion of this expression into the Biot-Savart equation (6), the contributions of the

tangential derivatives, being finite, vanish in the limit as ε tends to zero, as does the last term

in the first parenthesis. This leaves only normal derivatives of the vorticity; each becomes

the jump in vorticity, −Aσ′, after integration over the direction normal to the surface. Thus

we are left with

uj =
A
4π

∮

c

σ′2 dσ′

∫ 2π

0

− sin θ′ x̂ + cos θ′ σ̂′

r
dφ′, (14)
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where the contour c is the generator of the surface in the meridional plane. The numerator

of the inner integrand is the unit vector tangent to the surface in this plane. The unit vector

σ̂
′ in the radial direction depends on the integration variable φ′ and must be retained inside

the integration, in particular

σ̂
′ = cosφ′ ŷ + sinφ′ ẑ, (15)

from Figure 1. Substituting (15) into (14), choosing to evaluate the velocity on the xy plane

(φ = 0), and identifying ŷ with σ̂ on this plane, gives

uj = A
∮

c

Kj(s
′) ds′, (16)

where

Kj(s
′) = σ′ [ −G(s′) sin θ′ x̂ +H(s′) cos θ′ σ̂] , (17)

G(s′) ≡ σ′

4π

∫ 2π

0

1

r
dφ′, (18)

H(s′) ≡ σ′

4π

∫ 2π

0

cosφ′

r
dφ′. (19)

The integrals G and H, obtained from Gradshteyn and Ryzhik [13, 2.571.4] and Bierens de

Haan [2, Table 68, item 25], respectively, are

G(s′) =
σ′

π
√
A+B

K(r̃), (20)

H(s′) =
1

2πσ

(
A√
A+B

K(r̃) − E(r̃)
√
A+B

)
, (21)

r̃ ≡
√

2B

A+B
, (22)

in which K and E are the complete elliptic integrals of the first and second kind respectively,

r̃ is their argument (called the modulus) and A and B are defined in (8) and (9).

2.2 Contribution due to the continuous part of the vorticity

After substituting the fact that ∇′ × ω(x′) = 2A x̂ inside D into the Biot-Savart expression

(6) one obtains the contribution uc to the velocity field arising from the continuous part of
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the vorticity distribution:

uc =

( A
2π

∫

D

1

r
dx′

)
x̂. (23)

The crucial fact which allows transformation of the volume integral in (23) to a surface

integral is the following:

1

r
=

1

2
∇′2r =

1

2
∇′ · ∇′r, (24)

which can be checked (use Cartesian coordinates). Use of (24) together with Gauss’ theorem

transforms (23) to

uc =

( A
4π

∫

∂D

n̂′ · ∇′ r dS

)
x̂. (25)

Gauss’ theorem is valid provided the integrand 1/r is regular. This holds for field points

exterior to D but fails otherwise. However, one can apply the theorem to a region which

excludes a spherical region of radius ε about the singularity for interior field points and

excludes a similar hemispherical region for field points on the surface. It can then be shown

that the volume and surface integrals arising from the excluded region vanish in both cases

as ε→ 0. This renders (25) valid everywhere.

For an axisymmetric surface the integrand in (25) can be simplified as follows. First,

write the quantity ∇r in Cartesian coordinates:

∇′r = −1

r
[(x− x′) x̂ + (y − y′) ŷ + (z − z′) ẑ] . (26)

Next put y = σ and z = 0, our previous choice of the azimuthal location of the field point,

y′ = σ′ cos φ′ and z′ = σ′ sinφ′. From Figure 2, we observe that the normal vector can be

expressed as

n̂′ = cos θ′ x̂ + sin θ′ σ̂′ (27)

= cos θ′ x̂ + sin θ′ cosφ′ ŷ + sin θ′ sinφ′ ẑ. (28)

Substituting (26) and (28) into (25) and expressing the resulting integral in terms of the

quantities, G and H defined previously we obtain

uc = A
∮

c

Kc(s
′) ds′, (29)
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where

Kc(s
′) = {G(s′) [(x′ − x) cos θ′ + σ′ sin θ′] −H(s′)σ sin θ′} x̂. (30)

2.3 Summary of the formulation

Finally, combining the two contributions (16) and (29) to the velocity field and invoking

the dynamical fact that the boundary is convected with the fluid, the contour dynamics

formulation for axisymmetric flow reads

dx(s)

dt
= A

∮

c

K(s′) ds′, (31)

where

K(s′) = [(x′ − x)G(s′) cos θ′ − σH(s′) sin θ′] x̂ + σ′H(s′) cos θ′ σ̂. (32)

The formulation of Pozrikidis [27] differs from ours in the following respects. The radial

component of the velocity arises from the jump contribution only. For it, Pozrikidis’ formu-

lation is identical to ours. The difference lies in the treatment of the axial component of

the velocity. Pozrikidis expresses the velocity potential external to the vortex as an integral

over the core, of the potential due an elemental vortex filament, which can be written in

terms of elliptic integrals of the third kind. To obtain the axial velocity this expression is

differentiated with respect to x and Green’s theorem in the plane is used to secure a contour

integral for the velocity. A branch cut is introduced to make the velocity single valued. The

final expression involves the elliptic integral of the third kind which can be written in terms

of complete and incomplete elliptic integrals of the first and second kind. The latter can be

computed iteratively. The present formulation is in terms of the complete elliptic integrals

which are calculated by a log-polynomial approximation.
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3 Numerical implementation

Equation (31) is a non-linear integro-differential equation for motion of the boundaries of

the vortex cores. For numerical purposes, the contours are represented by a discrete set of

node points which are convected as material particles. The integrals are approximated by

connecting the points with straight line segments. In the planar case, the segment integrals

are carried out in closed form. However, quadrature is sometimes used to save computing

time. This requires that the singularity be removed with integration by parts. In the

axisymmetric case, neither of these approaches is possible. Instead just the contribution to

the integrals from segments not adjacent to the field point is evaluated by two-point Gaussian

quadrature. The elliptic integrals are calculated using the log-polynomial approximations

of Cody [4]; the formula which is accurate to 10−8 is being used. The cost of the method

scales as N 2nq where N and nq are the number of node and quadrature points per segment,

respectively. This is because for each node point Nnq integrand evaluations are needed.

Due to the logarithmic singularity of the integrand as the modulus r̃ → 1, the contribution

from segments neighboring the field point is evaluated by expanding the terms in (32) in a

series of powers and logarithms about the singularity along an adjacent segment. This series

is then integrated exactly term by term. The expansions obtained using MACSYMA have

the form

K(ξ) = PJ
1 (ξ) + PJ

2 (ξ) log

(
8ξ

l

)
, (33)

where PJ
i denotes a polynomial of degree J with vector coefficients, l is the length of the

segment and ξ is a parameter along the segment such that 0 ≤ ξ ≤ 1. The coefficients of the

polynomials depend upon the segment geometry and are listed in Appendix A.

To assess the number of terms in the expansion necessary for accuracy and to check the

analysis we compared the values of the integrand for several J against the kernels obtained

using the expressions of Cody to evaluate the elliptic integrals. This comparison is meaningful

because Cody’s expressions have the proper analytic behavior of the elliptic integrals in the
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limits r̃ → 0 and r̃ → 1. For example, Figure 3 shows the approximations for the case

of a segment for Hill’s vortex spanning an arc between polar angles ϑ = 25◦ and ϑ = 75◦

measured from the forward stagnation point. This length is much larger than any we used in

the simulations yet the representation using five terms is accurate throughout the segment.

Figure 4 compares the exact and computed axial velocity on the surface of Hill’s vortex

using only 15 segments of identical length. It serves as a check of the overall formulation

and underscores the care with which the logarithmic contribution to the velocity must be

treated. The results are excellent, the error at the point of maximum velocity being 4%.

The dashed curve shows the result obtained when the contribution of adjacent segments is

deleted. One observes that away from the axis the contribution from adjacent segments is

substantial.

There is a standard approach for treating singular kernels which arise frequently in po-

tential theory (see for example the book by Jawson and Symm [15]). This technique was

adopted by Pozrikidis [27]. Here, one subtracts out just the singular part of the kernel. In

our formulation this would be the constant term in PN
2 (ξ) times the log term. The inte-

gral of this term over the entire contour is then be computed exactly for the segment or

circular arc discretization and added back in. The non-singular part of the kernel is inte-

grated using Gaussian quadrature. The present approach also accurately integrates terms

like ξ log ξ, ξ2 log ξ, etc. near the singularity which polynomial based quadrature rules are

not designed for. On the other hand, since log(ξ) is weakly varying this might be a non-issue.

In Pozrikidis’ approach one can in principle increase the number of quadrature points arbi-

trarily to obtain the desired accuracy. With our approach, apart from the algebra required,

the series remains truncated and segments must be kept short to maintain accuracy. The

simplest and most direct approach for treating elements (straight or curved) adjacent to a

node which has emerged in the boundary element literature is to use a quadrature rule [5]

that can exactly integrate:

I(ξ) =

∫ 1

0

[
pJ(ξ) + qJ(ξ) log ξ

]
dξ (34)
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where pJ(ξ) and qJ(ξ) are polynomials of degree J ; Crow provides weights and abscissae for

J ≤ 6. For subsequent developments the reader may consult the references in Smith [32].

The present program halves the length of segments which have stretched beyond a spec-

ified tolerance (currently 0.016L0) and removes nodes when segments become too short

(< 0.004L0) provided the curvature is sufficiently small. Here L0 is the initial mean toroidal

radius of the vortex rings. It is also essential that the length of segments close to the axis of

symmetry be kept much less than the distance of the segment from the axis. This is because

the expansion of the elliptic integrals on a segment adjacent to a node proceeds in powers

and logarithms of the complementary modulus, r∗ =
√

1 − r̃2 which is small all along the

segment provided the length l of the segment is much smaller than the minimum radius σmin

of the segment (see the discussion near eq. 49 in Appendix A). The node insertion routine

ensures that l/σmin < 0.15 if this condition is more stringent than previous criteria. This

criterion is impossible to satisfy for an axis touching segment for which we consider two sub-

cases: (i) If the field point is the end point of the segment lying on the axis (σ = 0, x = 0,

say) then the radial velocity is zero by symmetry while for the axial velocity, the integrand

tends to zero as the integration point (x′, σ′) approaches the field point. Thus there is no

singularity in this case and quadrature is used. (ii) If the node point is not on the axis then

numerical tests indicated that for segments sufficiently close to being axis-normal, the series

is still accurate even though the modulus r̃ varies from 0 to 1, its entire range. Before an

implementation is undertaken in the future, it would be worthwhile to make a brief study of

the accuracy and ease of implementation of all the options available for integration.

Another issue, which we don’t address here, is the treatment of non-adjacent segments

that are closer to an evaluation point than the length of the segment. This situation arises

when filamentary structures are produced or when vortices fission or merge; such events

are a generic feature of vorticity dynamics. In the present implementation we stop the

calculation before such situations arise. One way to deal with this would be by “contour

surgery” (Dritschel [9]) with removes contour portions that are close and anti-parallel. In his

13



work, Pozrikidis [27] also implemented removal of filamentary regions that arise when Hill’s

spherical vortex is perturbed. In two-dimensions the need to employ contour surgery arises

somewhat later in time because the velocity induced by a segment can be computed exactly.

In our case a node point that comes close to a segment “sees” only the two quadrature points

on the segment which are inadequate sample of a rapidly varying integrand. The simplest

approach to mantain accuracy would be to use adaptive quadrature until it becomes too

expensive and then to use contour surgery.

Time integration was performed using the fourth order Runge-Kutta scheme. In initial

tests it was found that too large a time step resulted in a shrinking volume of vortical fluid.

The time step ∆t was chosen to satisfy

Ω∆t < ε, (35)

where Ω is half the vorticity at the center of the core and represents the magnitude of the

eigenvalues of the ODE system for a particle undergoing solid body rotation at angular

velocity Ω. Numerical tests indicated that a constraint in volume change of ∆V/V < 0.01%

over one eddy turnover period dictated that ε < 0.05. The time step restriction from the

angular motion can be eliminated by moving each node point according to the contour-

normal velocity (since the tangential velocity does not alter the shape of the contour). This

is possible in a better than linear representation of the contour where an accurate normal is

available at node points.

The amount of insight that one may obtain from a contour dynamics run and ones

confidence in it are increased by extensive diagnostics. To gauge the accuracy of a calculation

we monitor the flow invariants: volume, circulation, impulse and, occassionally due to cost,

the energy together with its spectrum E(k). The overall motion of the vortices was obtained

by calculating the positions of the centroids of the core shape and of the vorticity distribution.

Their corresponding time-rates were also monitored. It is not enough to merely visually

observe the core shape. This remark also applies to vortex calculations via finite difference

or spectral methods. Even very weak strains caused by the presence of another vortex result
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in the excitation of small but complex deformation modes. Hence the overall features of

the core deformation were obtained by fitting an ellipse to the core shape. The dimensions

and orientation of the ellipse are related to the eigenvalues and eigenvectors of the matrix of

second order moments.

4 Tests of accuracy and convergence

Figure 5 shows the convergence in the discrete L2 norm of the axial and radial velocity as

a function of the number of segments in the case of Hill’s vortex. The slope is close to −2,

consistent with the second order accuracy of the segment discretization. There is a slight

decrease in the slope as we approach machine round-off (single precision for this test). This

represents a static test of the algorithm. A good dynamic test (suggested to us by Prof.

Zabusky) is to ensure that for Norbury [22] equilibrium shapes, the core remains steady up

to the accuracy of the Fourier coefficients in his paper. Adopting the mean toroidal radius

L0 as a reference length, Norbury [22] specifies the boundary by

%(β)

L0

= â0 +
J∑

j=1

(
âj cos jβ + b̂j sin jβ

)
. (36)

The initial shapes are symmetric in x, about x = 0 say, % is measured from the point x = 0,

σ = L0 and β runs counterclockwise from the point of maximum σ on the line x = 0.

We studied the excursions of the coefficients from the values supplied by Norbury for the

duration of three revolutions of a particle on the boundary for an α = 0.6 vortex. Here α

is the ratio of area-effective core radius (
√

Area/π) to L0. The observed deviations must

have two parts. The first reflects inherent unsteadiness due to errors in the initial shape; a

‘cautious’ estimate of the error in the initial coefficients is ±0.0001 according to Norbury.

The second is due to inaccuracies in the present method; runs with 200, 400, 800, and 1200

segments were made to check that it converged to zero. An overall measure of the departure
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from the initial shape is the quantity

rms deviation =

(
2(δâ0)

2 +
J∑

j=1

(δâj)
2 + (δb̂j)

2

)1/2

, (37)

which is equal, by Parseval’s identity, to

(
1

πL2
0

∫ 2π

0

(δ%(β))2 dβ

)1/2

, (38)

where δ signifies the difference from the Norbury value and J = 11, the number of coefficients

furnished by Norbury.

The results are shown in Figure 6. Normalized time is defined as

t̂ ≡ U0t

L0

(39)

where U0 is the ring translational speed and L0 is its mean toroidal radius. By 1200 segments

the behavior has visually converged and nearly repeats every particle revolution; individual

coefficients exhibit the same periodicity. A small but otherwise arbitrary disturbance on a

two-dimensional circular vortex with uniform vorticity is also periodic according to Kelvin’s

analysis because the period of particle revolution is an integer multiple of the period required

for any Fourier mode to advance one wavelength. A power law fit to the rms deviations

at the last instant produced an order of convergence of 2.3, consistent with the segment

discretization. The amplitude of the rms deviation for 1200 nodes is less than that obtained

by applying Norbury’s bound to every coefficient. The maximum variation was observed in

â2 with an amplitude of 0.00008, close to Norbury’s estimate.

5 Examples

As a qualitative illustration of the method, we simulated a Hill’s spherical vortex with a

region of vortical fluid removed. The removed region has as its initial boundary, one of the

interior streamsurfaces of Hill’s vortex. The time evolution is shown in Figure 7 where the
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shading indicates the vorticity containing region. Time t̂ has been normalized using the

mean toroidal radius and speed of translation of a Hill’s vortex without the hole. A violent

evolution occurs during the time that the centroid of the outer boundary has propagated

2.5 radii. Irrotational fluid pushes through the rear, forming a thin cap. The vortex layer at

the outer radii thickens in spots as it rolls-up. This illustrates that distinct vortex patches

can form from vortex layers by a fast convective action without the intervention of the

mechanisms of roll-up into a spiral followed by viscous smoothing across the turns of the

spiral. The last computed state in Figure 7 is composed of patches connected by thin sheets

and a distorted region of vorticity. The total number of node points increased from 400 to

806 during the calculation. Up to the third frame, the circulation and impulse decreased by

0.1% but subsequently more inaccuracy resulted from the closeness of non-adjacent nodes.

The integrand behaves logarithmically and polynomial quadrature is no longer accurate.

Accurate computation of the integrals requires that the distance between quadrature points

be smaller than the distance between non-adjacent nodes. At the last frame, these invariants

have decreased by 1%. To continue this calculation further would require contour surgery

which has been developed by Dritschel [9].

The final illustration is the head-on collision of two [22] rings with thickness parameter

α = 1.0. Figure 8 shows successive instants during this collision. After the core has flattened

at frame (d) it begins to “fill-out” as in (e). At (h) a head of smaller aspect ratio has been

formed. It is connected to a long flattened tail by a thin umbilical. Figure 9 is a magnified

view of the head and umbilical. It is remarkable that the shape of the head is fit well the two-

dimensional Sadovskii-Pierrehumbert [30, 24, 25] vortex pair (dotted line) which propagates

without change of form. This behavior is reminiscent of inelastic solitons [16].

The location of the vorticity centroid (plus sign) shows that roughly half the circulation

resides in the tail. Owing to the considerable straining of the vortex boundaries near the

collision plane and on the umbilical the total number of node points increased from 600

to 1972. Loss of accuracy began a few time steps prior to the last instant shown. This
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manifested itself as sharply increasing errors in the invariants. Nevertheless, the total change

in the volume of vortical fluid was only −.034%.

Figure 10 shows that the head-tail structure has also been observed in experiments of two

colliding rings obtained by Oshima [23]. The upper row (U) shows, at successive instants,

the meridional plane illuminated by a sheet of light. The lower row (L) is an oblique view

30◦ to the plane of collision. In U(b) a head with a long tail similar to the contour dynamics

result of Figure 8h is seen. In the oblique view L(b) this appears as a concentration of smoke

around the periphery of the flattened rings. In L(c) the head has pinched-off and moves

independently of the tail. Probably due to slight asymmetry in the initial conditions U(c)

shows that it moves at an angle from the collision plane. The tail also fails to remain planar.

Nevertheless axisymmetry is not broken until L(d) where the head develops the [6] instability.

Concentration of dye is seen at the periphery of the tail which may indicate the formation

of another head. The head-tail structure has also been observed in three-dimensional vortex

tube reconnection [31, 19].

6 Summary

This work considered inviscid swirl-free axisymmetric flows consisting of regions in which the

vorticity varies linearly with radius. The velocity field was expressed as a contour integral

which reduces the problem to a one-dimensional integro-differential equation for the motion

of the boundaries of the regions. The streamfunction was also formulated as a contour

integral. The method was demonstrated for two vortex rings colliding head-on. A head-tail

structure was formed which agrees with experimental flow visualization.
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A Contribution to the induced velocity from adjacent

segments

The purpose of this appendix is to obtain the contribution to the velocity at a given node

point from segments which are adjacent to it. We proceed by expanding the kernel K(s′)

in (29) in a series of powers and logarithms. The series is then integrated exactly term by

term.

Let the field point be the nth node located at (xn, σn). Let (lx, lσ) be the axial and radial

components of the vector with length l, pointing in the direction of integration along the

forward adjacent segment. Then along this segment we have

x′ = xn + ξlx, σ′ = σn + ξlσ, (40)

where ξ is a parameter which runs from 0 to 1 on the segment. The quantities A and B

defined in (8) and (9), are along the segment

A = fξ2 + pξ + q, B = pξ + q, (41)

where

f = l2, p = 2σnlσ, q = 2σ2
n. (42)

The coefficients f , p and q above are functions of the segment geometry and the expan-

sions of the kernels depend only on them. The contribution to the velocity at the nth node

due to the segment is

∆uσ = Alσ
∫ 1

0

σ′H dξ, (43)

∆ux = A
[
−lσ

∫ 1

0

(xn − x′)Gdξ + lx

∫ 1

0

σnH dξ

]
. (44)

We provide expansions for each of the integrands which appears above. They are obtained

with the aid of the expansions of the elliptic functions K(r̃) and E(r̃) about r̃ = 1 given in

Byrd and Friedman [3]. We write these out up to

O
[
log

(
4

r∗

)
r∗4

]
, (45)
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where r∗ is the complementary modulus
√

1 − r̃2. The leading term in the expansion of r∗

is O(ξ) so for consistency the highest power in ξ that may be retained in any term is four.

What does an expansion in r∗ mean for our case? Let ∆ denote the distance between

the source and field points (in the same meridional plane), i.e.,

∆2 = (x− x′)2 + (σ − σ′)2. (46)

Define the parameter

ε ≡ ∆2

4σσ′
. (47)

Thus if the distance between source and field points is smaller than both their radii (σ and

σ′) then ε is small. Simply put, ε is small when local two-dimensionality holds for the line

connecting the source and field points. Now

A+B = (x− x′)2 + σ2 + σ′2 + 2σσ′,

= (x− x′)2 + σ2 + σ′2 − 2σσ′ + 4σσ′,

= ∆2 + 4σσ′,

= 4σσ′(1 + ε), (48)

while B = 2σσ′ so that

r∗2 = 1 − 2B

A+B
=

ε

1 + ε
. (49)

Thus r∗ is small when ε is small and our expansion will hold as long as local two-dimensionality

prevails along the segment. This requires that the length of each segment be much smaller

than the distance to the axis of its end-point closest to the axis. The body of the paper

discussed how this condition is maintained.

Each of the integrands in (43) and (44) assumes the following form

C
[
log

(
8σn

lξ

) J∑

j=0

cjξ
j +

J∑

j=0

c′jξ
j

]
. (50)

For σ′H and σnH, J = 4 but for (x − x′)G it is consistent to go up to J = 5 since (x− x′)

is proportional to ξ. Each of the coefficients in (50) has the structure

cj = ajlσ + bjσn, (51)
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c′j = a′jlσ + b′jσn. (52)

The following quantities recur often so it is convenient to define them at the outset.

T1 = fpq2, T2 = p3q, T3 = f 2q2, (53)

T4 = fp2q, T5 = p4, T6 = fq3, (54)

T7 = p2q2, T8 = pq3, T9 = q4. (55)

For σ′H, J = 4 and

a4 = 288T1 − 96T2, b4 = 90T3 − 216T4 + 60T5,

a′4 = − 384T1 + 224T2, b′4 = −93T3 + 360T4 − 152T5,

a3 = − 576T6 + 192T7, b3 = a4,

a′3 = 192T6 − 384T7, b′3 = a′4,

a2 = − 768T8, b2 = a3,

a′2 = − a2, b′2 = a′3,

a1 = −1536T9, b1 = a2,

a′1 = 3072T9, b′1 = a′2,

a0 = 0, b0 = a1,

a′0 = 0, b′0 = a′1,

C = −(1/2π)(1/1536q4).

(56)

After the entries for σ′H have been generated and stored, to obtain the corresponding

entries for σnH do the following. The bj and b′j for σnH are the same as those for σ′H which

you have already stored. The aj and a′j for σnH are zero; in other words you need worry

only about the second terms in (51) and (52).
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For (xn − x′)G, J = 5 and

a5 = 288T1 − 480T2 b5 = 54T3 − 360T4 + 420T5

a′5 = − 384T1 + 736T2 b′5 = −63T3 + 552T4 − 704T5

a4 = − 192T6 + 576T7 b4 = a5

a′4 = 192T6 − 768T7 b′4 = a′5

a3 = − 768T8 b3 = a4

a′3 = −a3 b′3 = a′4

a2 = 1536T9 b2 = a3

a′2 = 0 b′2 = a′3

a1 = 0 b1 = a2

a′1 = 0 b′1 = 0

a0 = 0 b0 = 0

a′0 = 0 b′0 = 0

C = −(1/2π)(txσn/768q5)

(57)

Finally, each integral is obtained by integrating (50) for 0 ≤ ξ ≤ 1:

C
{

log

(
8σn

l

) J∑

j=0

cj
j + 1

+

[
J∑

j=0

cj
(j + 1)2

+
c′j

j + 1

]}
. (58)

For the segment behind the node, if (l̃x, l̃σ) are its components (in the direction of inte-

gration) then the expansions are identical except that (−l̃x,−l̃σ) replace (lx, lσ) in forming

f, p and q.

B Contour formulation for the streamfunction

In the body of the paper, an expression for the velocity field was derived in terms of contour

integrals. We now do the same for the Stokes streamfunction, ψ.

In calculating the shapes of steadily translating vortex rings, the condition that the

streamfunction be constant on the surface of the vortex (in a steadily translating frame whose
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velocity is determined as part of the solution) is easier and more accurate to impose than

one requiring that the velocity be tangent to the surface. Using the formulation one could

compute the Prandtl-Batchelor eddy behind an axisymmetric body or calculate steady shapes

more complicated than the Norbury [22] family, for example rings with nested contours. In

his work, Norbury did not have available a contour formulation for the streamfunction and

this necessitated costly and less accurate plane quadratures for the solution of the integral

equation for steadily translating rings.

The vector potential, A is defined as

u = ∇× A, (59)

∇ · A = 0. (60)

Given a certain u, A is defined up to the gradient of a scalar function. The condition (60)

is a convenient choice that makes A unique. Writing (59) in cylindrical coordinates and

comparing it with the definition of the Stokes streamfunction one finds

ψ = σAφ. (61)

Hence it is enough to calculate the vector potential. Equations (59) and (60) together imply

∇2A = −ω, (62)

whose solution for an unbounded fluid is

A =
1

4π

∫

D

ω(x′)

r
dx′, (63)

where D is the vorticity containing region. The goal is to transform this equation into a

form in which the integrand is concentrated on the boundary. First, as noted previously

1/r = ∇′2r/2 so that so that

A =
1

8π

∫

D+

ω(x′)∇′2r dx′. (64)

Note that we have changed the domain of integration from D to D+ which is defined to be

slightly larger than D. This is permissible since the vorticity is zero in the extra region. The
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reason for this change will become clear below Next, we write Green’s second identity for

the pair of functions ω and r:

∫

D+

(
ω∇′2r − r∇′2ω

)
dx′ =

∫

∂D+

(
ω
∂r

∂n′
− r

∂ω

∂n′

)
dS. (65)

The reason for using the slightly larger region D+ now becomes clear. Since ∂D+ lies in a

region of identically zero vorticity, the boundary integral in (65) vanishes giving:

∫

D+

ω(x′)∇′2r dx′ =

∫

D+

r∇′2ω(x′) dx′. (66)

The introduction of D+ was suggested by P. Spalart. Decompose the right hand side of (66)

into two parts, one for the interior of D+ and another for a thin shell of width 2ε which

surrounds ∂D. Then take the limit as ε→ 0. The first part vanishes because the Laplacian

of the linear vorticity is zero. As an aside, one might think at this point that the formulation

could be used to obtain steady vortex rings with vanishing ∇2ω(x) in D which includes

but is more general than the linear in radius vorticity distribution. Such steady flows are

called “controllable” by the Truesdell school of mechanics. Unfortunately, however, Marris

and Aswani [18] have provided a long and complicated proof that the only non-rectilinear

controllable axisymmetric motions are those in which ωφ/σ = constant.

To work out the integral in the shell, introduce orthogonal curvilinear coordinates (n, s, φ)

such that the surfaces n = −ε, 0, ε coincide with the inner boundary of the shell, the surface

of the vortex and the outer boundary of the shell, respectively. If s and n are chosen to be

the arc lengths on the lines along which they vary then the metrics are (hn, hs, hφ) = (1, 1, σ).

With these metrics the Laplacian becomes

∇2ω(x) = ∇2
[
ωφ(s, n) φ̂

]
=

∂

∂n

[
1

σ

∂(σωφ)

∂n

]
φ̂ + O(ε), (67)

φ̂ = − sin φ ŷ + cosφ ẑ, (68)

where O(ε) denotes terms which disappear upon integration as ε → 0. These arise from

tangential (s) derivatives of the vorticity. As before, let us choose the field point to be on

the φ = 0 plane where Aφ = Az and r =
√
A−B cosφ′ with A and B as defined in (8) and
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(9). Then

Aφ(x, σ) =
1

8π
lim
ε→0

∫ 2π

0

dφ′ cosφ′

∮
ds′
∫ +ε

−ε

dn′ σ′r
∂

∂n′

[
1

σ′

∂(σ′ωφ)

∂n′

]
. (69)

Denote the innermost integral in (69) by In. Applying integration by parts twice gives

In = σ′r

[
∂ωφ

∂n′

]+ε

−ε

− σ′
∂r

∂n′
[ωφ]

+ε
−ε + O(ε). (70)

In the limit as ε→ 0

[ωφ]
+ε
−ε → −Aσ′, (71)

[
∂ωφ

∂n′

]+ε

−ε

→ −A sin θ′. (72)

Finally,

ψ(x, σ) =
Aσ
8π

∮
ds′
(
σ′2

∫ 2π

0

∂r

∂n′
cos φ′ dφ′ − σ′ sin θ′

∫ 2π

0

r cosφ′ dφ′

)
. (73)

The two integrals with respect to φ′ can be expressed explicitly in terms of tabulated

integrals denoted as I1, I2 and I3 below. The first is obtained after substituting for ∂r/∂n′

from (26) and (28) and the second after an integration by parts:

∫ 2π

0

∂r

∂n′
cosφ′ dφ′ = 2 [(x′ − x)I2 cos θ′ − σI3 sin θ′ + s′I2 sin θ′] , (74)

∫ 2π

0

r cosφ′ dφ′ = B (I3 − I1) , (75)

where

I1 ≡
∫ π

0

dφ′

√
A− B cosφ′

=
2√

A+B
K(r̃), (76)

I2 ≡
∫ π

0

cosφ′

√
A− B cosφ′

dφ′ =
2A

B
√
A+B

K(r̃) − 2

B

√
A +BE(r̃), (77)

I3 ≡
∫ π

0

cos2 φ′

√
A− B cosφ′

dφ′ =
2

3B2
√
A+B

[
(2A2 +B2)K(r̃) − 2A(A+B)E(r̃)

]
,(78)

r̃ =

√
2B

A +B
. (79)

This formulation was checked numerically against the exact expression for Hill’s spherical

vortex given in Batchelor [1, eq. 7.2.18] relative to a reference frame travelling with the

25



vortex. For example, at the point where the streamfunction has a peak, the errors with 15,

30 and 60 segments were -2.4%, -.61% and -.15%, respectively, indicating the second order

convergence of the segment discretization.
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Strömungsforschung, Göttingen, 1978.

[27] C Pozrikidis. The non-linear stability of Hill’s vortex. J. Fluid Mech., 168:337–367,

1986.

[28] D. I. Pullin. Contour dynamics methods. Ann. Rev. Fluid Mech, 24:89–115, 1992.

[29] D.I. Pullin and P.A. Jacobs. Inviscid evolution of stretched vortex arrays. J. Fluid

Mech., 171:377–406, 1986.

[30] V.S. Sadovskii. Vortex regions in a potential stream with a jump of bernoulli’s constant

at the boundary. Appl. Math. Mech., 35:729–735, 1971.

[31] P.R. Schatzle. An experimental study of fusion of vortex rings. Phd thesis, California

Institute of Technology, 1987.

[32] R.N.L. Smith. Direct gauss quadrature formulae for logarithmic singularities on isopara-

metric elements. Engineering Anal. with Bound. Elements, 24:161–167, 2000.

28



[33] M. Sun and S. Lichter. Entrainment and detrainment from a model boundary layer. J.

Fluid Mech., 485:143–159, 2003.

[34] N.J. Zabusky, M.H. Hughes, and K.V. Roberts. Contour dynamics for the euler equa-

tions in two-dimensions. J. Comp. Phys., 30:96–106, 1979.

29



Tribute to Tony Leonard for this Special Issue Dedicated to Him

I was lucky when in 1983 Joel Ferziger hooked me up with Tony to do my dissertation.

Tony was then a research scientist at NASA Ames. A few thoughtful words spoken by him

often turned out to provide the key way of looking at something. And, he had a knack

for making one feel I one knew the answer all along: in discussions he might preface his

insight with “I think you are trying to say this . . . ” I am certain that others can recount

similar phenomena. Tony has a warm, easy-going, and supportive nature which endears him

to all that meet him. That this co-exists with penetrating keenness makes him an ideal

thesis adviser. His scientific motivations remain pure and untainted: the pursuit of truth,

understanding, problem solving, and fun. Through a combination of acceptance, openness,

and insight, Tony brings out the hidden and unrecognized value in whatever person or subject

he touches. (KS)

30



FIGURE CAPTIONS

Figure 1: Cylindrical coordinates.

Figure2: Surface oriented coordinates (n, s, φ) defined in the text.

Figure 3: Integrand for the axial velocity along the chord of an arc between 25◦ and 75◦

on a Hill’s vortex with unit radius. , exact; , 5 term expansion; , 3 terms;

, 2 terms.

Figure 4: Axial velocity at node points on a Hill’s vortex of unit radius and A = 1. ,

exact; , computed with 15 segments; , deleting the contribution from adjacent

segments.

Figure 5: Error in velocities evaluated at the node points of a Hill’s vortex with unit

radius and A = 1. , •, for the axial and radial component, respectively.

Figure 6: History of the rms deviation of Fourier coefficients of the core boundary from

the initial Norbury [22] shape for different number of segments Ns. , Ns = 200; ,

Ns = 400; , Ns = 800; , Ns = 1200. Note: The ordinate values are multiplied by

10−4 not the axis title.

Figure 7: Evolution of a vortex formed by removing a region of vortical fluid from

Hill’s spherical vortex. Times normalized using the mean toroidal radius and the speed of

translation of the vortex without the hole: A, 0; B, 4.27; C, 8.53; D, 12.80.

Figure 8: Core shapes for the collision of α = 1.0, d̂ = 10. +, vorticity centroids. U0t/L0:

(a) 0; (b) 4.44; (c) 5.18; (d) 5.92; (e) 5.67; (f ) 7.41; (g) 8.15; (h) 8.89.

Figure 9: Close-up of the head at U0t/L0 = 8.89 compared with the two-dimensional

steadily translating vortex pair solution ( ) of Sadovskii [30] and Pierrehumbert [24]. +,

vorticity centroid.

Figure 10: Smoke visualization of the collision of two vortex rings by Oshima [23]. Time

progresses from left to right. U: the upper series shows a meridional plane illuminated by a
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sheet of light; L: the lower series is an oblique view at 30◦ from plane of collision. Reproduced

with permission.
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Figure 1: Cylindrical coordinates.
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Figure 2: Surface oriented coordinates (n, s, φ) defined in the text.

Figure 3: Integrand for the axial velocity along the chord of an arc between 25◦ and 75◦ on a

Hill’s vortex with unit radius. , exact; , 5 term expansion; , 3 terms; ,

2 terms.
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Figure 4: Axial velocity at node points on a Hill’s vortex of unit radius and A = 1. ,

exact; , computed with 15 segments; , deleting the contribution from adjacent

segments.

.

Figure 5: Error in velocities evaluated at the node points of a Hill’s vortex with unit radius

and A = 1. , •, for the axial and radial component, respectively.
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Figure 6: History of the rms deviation of Fourier coefficients of the core boundary from the

initial Norbury [22] shape for different number of segments Ns. , Ns = 200; ,

Ns = 400; , Ns = 800; , Ns = 1200. Note: The ordinate values are multiplied by

10−4 not the axis title.
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Figure 7: Evolution of a vortex formed by removing a region of vortical fluid from Hill’s

spherical vortex. Times normalized using the mean toroidal radius and the speed of trans-

lation of the vortex without the hole: A, 0; B, 4.27; C, 8.53; D, 12.80.
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Figure 8: Core shapes for the collision of α = 1.0, d̂ = 10. +, vorticity centroids. U0t/L0:

(a) 0; (b) 4.44; (c) 5.18; (d) 5.92; (e) 5.67; (f ) 7.41; (g) 8.15; (h) 8.89.
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Figure 9: Close-up of the head at U0t/L0 = 8.89 compared with the two-dimensional steadily

translating vortex pair solution ( ). +, vorticity centroid.

39



Figure 10: Smoke visualization of the collision of two vortex rings by Oshima [23]. Time

progresses from left to right. U: the upper series shows a meridional plane illuminated by a

sheet of light; L: the lower series is an oblique view at 30◦ from plane of collision. Reproduced

with permission.
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